Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices.

نویسندگان

  • Malalahalli S Giridhar
  • Kibyung Seong
  • Axel Schülzgen
  • Pramod Khulbe
  • Nasser Peyghambarian
  • Masud Mansuripur
چکیده

We describe a technique for surface and subsurface micromachining of glass substrates by using tightly focused femtosecond laser pulses at a wavelength of 1660 nm. A salient feature of pulsed laser micromachining is its ability to drill subsurface tunnels into glass substrates. To demonstrate a potential application of this micromachining technique, we fabricate simple microfluidic structures on a glass plate. The use of a cover plate that seals the device by making point-to-point contact with the flat surface of the substrate is necessary to prevent the evaporation of liquids in open channels and chambers. Methods for protecting and sealing the micromachined structures for microfluidic applications are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond micro- and nano-machining of materials for microfluidic applications

Ultrafast laser micromachining is a promising candidate for microand nano-fabrication technology. Due to the high precision of femtosecond ablation, laser-machined features can be added to devices prototyped by lithography. To accomplish that, parametric studies of laser interrogation of materials of interest are necessary. We present femtosecond laser ablation studies of glass, PDMS, fused sil...

متن کامل

Compact 3D Microfluidic Channel Structures Embedded in Glass Fabricated by Femtosecond Laser Direct Writing

We demonstrate rapid fabrication of complex three-dimensional (3D) microfluidic channels with lengths up to ~6.0 cm within a tiny volume down to ~80 nl in glass substrates by femtosecond laser direct writing, which, to the best of our knowledge, is the longest microfluidic channel directly embedded in glass by femtosecond laser microprocessing. The fabrication mainly includes the following two ...

متن کامل

Femtosecond Laser 3D Fabrication in Porous Glass for Micro- and Nanofluidic Applications

The creation of complex three-dimensional (3D) fluidic systems composed of hollow microand nanostructures embedded in transparent substrates has attracted significant attention from both scientific and applied research communities. However, it is by now still a formidable challenge to build 3D microand nanofluidic structures with arbitrary configurations using conventional planar lithographic f...

متن کامل

Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.

The creation of complex three-dimensional (3D) microfluidic systems has attracted significant attention from both scientific and applied research communities. However, it is still a formidable challenge to build 3D microfluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. Here, we demonstrate rapid fabrication of high-aspect-ratio microflu...

متن کامل

Monolithic optofluidic chips: from optical manipulation of single cells to quantum sensing of fluids

We report on a new class of integrated optofluidic devices, fabricated by femtosecond laser micromachining. The capability to combine optical waveguides with microfluidic channels in the same glass chip provides a very powerful platform, introducing new tools in the field of optical sensing. Two recent applications that greatly benefitted from this novel technology are on-chip optical manipulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 43 23  شماره 

صفحات  -

تاریخ انتشار 2004